terça-feira, 17 de abril de 2012

Permutação Simples


Permutação Simples

Podemos considerar a permutação simples como um caso particular de arranjo, onde os elementos formarão agrupamentos que se diferenciarão somente pela ordem. As permutações simples dos elementos P, Q e R são: PQR, PRQ, QPR, QRP, RPQ, RQP. Para determinarmos o número de agrupamentos de uma permutação simples utilizamos a seguinte expressão P = n!.
n! = n*(n-1)*(n-2)*(n-3)*....*3*2*1
Por exemplo, 4! = 4*3*2*1 = 24

Exemplo 1
Quantos anagramas podemos formar com a palavra GATO?
Resolução:
Podemos variar as letras de lugar e formar vários anagramas, formulando um caso de permutação simples.
P = 4! = 24

Nenhum comentário:

Postar um comentário